Muon Beams for Future Experiments

R. Bernstein
Capabilities Frontier Workshop
BNL April 2013

Disclaimer

- This is an overview and way too simplistic
- I will discuss this as an experimenter
- So therefore everything will not be even close to exactly right and all the definitions and boundaries are blurry.

Physics Goals

- What Experiments Do We Want To Do?
 - primarily charged lepton flavor violation (CLFV), muons changing into electrons without neutrino emission $\mu^+ \to e^+ \gamma$ and $\mu^+ \to e^+ e^+ e^ \mu^+ e^- \to \mu^- e^+$ $\mu^- N \to e^- N$ and $\mu^- N \to e^+ N(Z-2)$
 - there are other things to measure but this is the killer app (IMO)
- What Is Our Goal?

"If you can measure something an order of magnitude better, you should do it" – Jim Cronin, who did some good experiments at BNL

"Model-Independent" Form

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa + 1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1 + \kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L (\bar{u}_L \gamma_{\mu} u_L + \bar{d}_L \gamma_{\mu} d_L)$$

"Loops"

"Contact Terms"

Supersymmetry and Heavy Neutrinos

New Particles at High Mass Scale (leptoquarks, heavy *Z*,...)

Contributes to $\mu \rightarrow e\gamma$

(just imagine the photon is real)

Does not produce $\mu \rightarrow e\gamma$

Quantitative Comparison?

R. Bernstein, FNAL

High Intensity Secondary Beams

μ e Conversion and μ \rightarrow eγ

CLFV:

probes masses up to 10⁴ TeV/c²

next generations are discovery experiments

new beams can build rich program

R. Bernstein, FNAL

$$\mu \rightarrow 3e$$

$$L_{\text{eff}} = \frac{m_{\mu}}{\Lambda^{2}} \overline{e} (\sigma^{\mu\nu} F^{\mu\nu}) \mu + \frac{1}{\Lambda_{F}^{2}} \overline{e} \Gamma_{A} e \overline{e} \Gamma_{A} \mu + \frac{1}{\Lambda_{F}^{\prime 2}} \overline{q} \Gamma_{A} q \overline{e} \Gamma_{A} \mu$$

- "Sister" process to $\tau \rightarrow 3l$
- The meaning of κ is not the same since the underlying diagrams are different, but still indicative
- reaching "ultimate"
 sensitivity, limited by
 radiative background,
 may require surface muon
 beams to get sufficient
 statistics

R. Bernstein, FNAL

Hisano

High Intensity Secondary Beams

17 April 2013

Specific Examples

Implication of Large θ_{13}

 \longrightarrow larger BR($\mu \rightarrow e\gamma$)

S. Antusch et al. JHEP11 (2006) 090

with BNL821 g-2

Combining MEG at PSI

with $\tau \rightarrow \mu \gamma$

muon (g-2) anomaly

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

Surface Muon Beams

"Arizona Beam"

A. Pifer et al., NIM 135, 39.

- Pions range out and decay close to the surface of a target and yield muons at 29.8 MeV/c (MEG may go slightly sub-surface; see below eqn.)
 - Source is very well defined
 - Polarization (pion stopped) near 100%
 - μ^+ only since π^- would be captured on nuclei
 - positron contamination

$$R_{\mu} \sim p^{3.5} \sqrt{\left(3.5 \frac{\Delta p}{p}\right)^2 + \left(\Delta R_{\text{straggling}}\right)^2}$$

R. Bernstein, FNAL

High Intensity Secondary Beams

Cloud Muon Beams

"surface beam" but pion decays outside target

magic focusing devices

Large momentum range

- target
- Source bigger than production target
- Contamination of both charges of pions and electrons
- Low Polarization

Decay Muon Beams

magic focusing devices

target

- Source much bigger than production target
- Polarization high; by using pion lifetime, contamination low
- Very flexible
 - neutrino horn beams
 - many DIS experiments

"cloud beam" but select pion momentum

Experiments

- Reorder the experiments into beam type:
 - two stopped muon processes: $stopped \rightarrow +$ $\mu^+ \rightarrow e^+ \gamma$ and $\mu^+ \rightarrow e^+ e^+ e^-$
 - two captured muon processes in clouds $captured \longrightarrow \\ \mu^- N \to e^- N \text{ and } \mu^- N \to e^+ N(Z-2)$
 - muonium-antimuonium oscillation and muonium HFS from cloud beam

$$\mu^+e^- \rightarrow \mu^-e^+$$

Mu2e Muon Beam: Three Solenoids and Gradient

4.6T ────B-field gradient——— 1T

Target protons at 8 GeV inside superconducting solenoid

Capture muons and guide through S-shaped region to AI stopping target

Gradient fields used to collect and transport muons
 R. Bernstein, FNAL High Intensity Secondary Beams

Muon Momentum
~ 50 MeV/c:
muons range out in
stopping foils

To Pulse or Not To Pulse?

- Pulses:
 - width of pulse
 - time between pulses
 - shape of pulse
 - "extinction": suppress beam between pulses
- In general (but NOT a fine line)
 - stopped muon experiments want as DC a beam as possible to keep instantaneous rates low
 - capture muon experiments want varying pulse width and separation depending on lifetime in capture atom

What Exists?

http://arxiv.org/pdf/1301.7225v2.pdf

	•	0 1		
Laboratory /	Energy /	Present Surface Future estimated		
Beam line	Power	μ^+ rate (Hz) μ^+/μ^- rate (Hz)		
PSI (CH)	(590 MeV, 1.3 MW, DC)			
LEMS	11	4 · 10 ⁸		
πE 5	n .	1.6 · 10 ⁸		
HiMB	(590 MeV, 1 MW, DC)	$4 \cdot 10^{10} (\mu^{+})$		
J-PARC (JP)	(3 GeV, 1 MW, Pulsed)			
	currently 210 KW			
MUSE D-line	n .	$3 \cdot 10^7$		
MUSE U-line	11	$4\cdot 10^8 (\mu^+)~(2012)$		
COMET	(8 GeV, 56 kW, Pulsed)	$10^{-11}(\mu^-)$ (2019/20)		
PRIME /PRISM	(8 GeV, 300 kW, Pulsed)	$10^{-11-12}(\mu^{-}) \ (> 2020)$		
FNAL (USA)				
Mu2e	(8 GeV, 25 kW, Pulsed)	$5 \cdot 10^{10} (\mu^{-}) (2019/20)$		
Project X Mu2e	(3 GeV, 750 kW, Pulsed)	$2 \cdot 10^{12} (\mu^{-}) (> 2022)$		
TRIUMF (CA)	(500 MeV, 75 kW, DC)			
M20	n .	$2 \cdot 10^{6}$		
KEK (JP)	(500 MeV, 2.5 kW, Pulsed)			
Dai Omega	n .	4 · 10 ⁵		
RAL -ISIS (UK)	(800 MeV, 160 kW, Pulsed)			
RIKEN-RAL		1.5 · 10 ⁶		
RCNP Osaka Univ. (JP)	(400 MeV, 400 W, Pulsed)			
MUSIC	currently max 4W	10 ⁸ (µ ⁺) (2012)		
		means> 10 ¹¹ per MW		
DUBNA (RU)	(660 MeV, 1.65 kW, Pulsed)			
Phasatron Ch:I-III		3 · 10 ⁴		

Examine Some Experiments

closely related experimentally to $\mu^+ \rightarrow e^+ e^+ e^-$

• MEG: $\mu^+ \rightarrow e^+ \gamma$

PSI: ~51 MHz, 300 psec wide

- need to stop muons and let them decay
- signal is back-to-back photon and electron

why well-defined stop

$$\mathcal{B} \propto (rac{R_\mu}{D})(\Delta t_{e\gamma})rac{\Delta E_e}{m_\mu/2} \left(rac{\Delta E_\gamma}{15m_\mu/2}
ight)^2 \left(rac{\Delta heta_{e\gamma}}{2}
ight)^2$$

- R/D term is rate over duty cycle: want DC beam as constant as possible over macroscopic time
- Δθ_{eγ} is vertexing: surface muons, well-defined stop location http://arxiv.org/pdf/1301.7225v2.pdf

R. Bernstein, FNAL

High Intensity Secondary Beams

What Do They Have Now?

should regard this as a challenge

A. The MEG beam line and muon target

A schematic of the MEG beam line and the $\pi E5$ channel is show in Fig. [11] Driven by the world's most intense DC proton machines at the Paul Scherrer Institut's high-intensity proton accelerator complex HIPA, it constitutes the intensity frontier in continuous muon beams around the world (c.f. Table III) and as such, is capable of delivering more than $10^8 \ \mu^+/s$ at $28 \ \text{MeV}/c$ to the MEG experiment. The surface muon beam has distinct advantages over a conventional 2-step pion decay-channel.

FIG. 11: (Left-part) shows the $\pi E5$ channel, connecting the production target E to the $\pi E5$ area. The MEG beam line starts from the extraction element Triplet I exiting the wall, followed by a Wien-filter, Triplet II and a collimator system, used to eliminate the beam contamination. The final range adjustment and focusing is performed by a superconducting solenoid BTS, before the muons are stopped in an ultra-thin target placed at the centre of the COBRA positron spectrometer.

What Would We do Next?

- How Do We Progress?
 - just-approved MEG upgrade is x10 from existing: beyond that?
- This is pure speculation and my personal opinion:
 - convert the photon and use tracking
 - limits from tracking, not calorimetry
- But you lose a lot of rate, since converter must be thin or experiment will suffer from multiple scattering

Rough Guesses

- 10¹¹ stopped muons/sec
- surface or sub-surface positive muon beam
 - recall $R \sim p^{3.5}$ so small drop in momentum is big change in range, helps with vertex
- as continuous as possible (10-20 nsec rep rate probably fine)
- proton energy? don't care for MEG but matters for Mu2e (pbars) -- so experiment-dependent

Muon Spin Rotation

- See https://indico.fnal.gov/
 conferenceDisplay.py?confld=6025
- Applications in
 - materials science
 - condensed matter
 - chemistry
- don't have time or knowledge to discuss

Japanese Plans

- different g-2 technique
 - "cold g-2", not magic momentum
- CLFV:
 DeeMe,
 separate from
 COMET and
 x100 less
 sensitive
- and EDMs

R. Bernstein, FNAL

Status: Much to Work On!

- yield of muonium too low to be useful; precise numbers hard to get
- surface muon rate way too low for competitive next-gen expt in CLFV

R. Bernstein, FNAL

U.S losing in pretty picture department
High Intensity Secondary Beams 17 April 2013

Mu2e: Status

- US Mu2e at CD1 planning for CD2 winter 2013
- Data ~2020
- Prototyping underway
 - 3 km of test cable in fall 2013

R. Bernstein, FNAL

High Intensity Secondary Beams

Next-Gen Mu2e

Will Current Method Work?

depends on a lot

Mu2e at the Booster

Did We See a Signal?

probably ~ x10 with some improvements/ experience

Improve Search

Vary Z of Stopping Target

need big changes

R. Bernstein, FNAL

High Intensity Secondary Beams

Limits: non-beam

- Cosmic Ray Backgrounds
 - make it deeper, just money
- Decay-in-Orbit Spectrum
 - intrinsic physics background, overcome with resolution and statistics

Beam Related Limits

- Must understand one key background: radiative pion capture (RPC)
- No time to discuss details, but antiprotons also make RPC if they arrive at experiment
 - 8 GeV KE booster makes phars
 - 3 GeV below threshold; probably best
 - 1 GeV probably fine

Prompt backgrounds and Pulsed Beam

target foils: muon converts here

= muons, electrons, pions

 $\frac{e}{\pi} \frac{e}{\mu, \pi, e} \frac{e}{\rho}$

pulsed beam lets us wait until after prompt backgrounds disappear and rate lowered

Radiative Pion Capture:

 $\pi N \rightarrow \gamma N$ $\gamma \rightarrow e^+e^-$ in foils

delayed 105 MeV electron

3(11-,14)

R. Bernstein, FNAL

High Intensity Secondary Beams

Pulsed Beam Structure

- Tied to prompt rate and machine: FNAL "perfect"
- Want pulse duration << $au_{\mu}^{\rm Al}$, pulse separation $pprox au_{\mu}^{\rm Al}$
 - FNAL Debuncher has circumference 1.7 μ sec , ~x2 $au_{\mu}^{
 m Al}$
- Extinction between pulses < 10⁻¹⁰ needed
 - = # protons out of pulse/# protons in pulse

 10⁻¹⁰ based on simulation of prompt backgrounds and beamline

R. Bernstein, FNAL

High Intensity Secondary Beams

What Has to Change?

- If we see a signal, need to go to higher Z
- Lifetime of the captured muon decreases with higher Z
- For Au, lifetime = 72.6 nsec: inside beam pulse!

High Intensity Secondary Beams

Different Muon Beams

http://www.sciencedirect.com/science/article/pii/S0920563211005330

- Would like to let all pions decay and then extract muons: no background, no extinction...
- Would be even better if muons nearly monochromatic: tightly controlled stopping location
 - PRISM/PRIME idea at J-PARC
 - FFAG kicker not on mass shell yet
 - Other ideas?
 - Do they lead to neutrino factory/muon collider?

PRISM=Phase Rotated Intense Slow Muon source

PRISM

$$B(\mu^- + Ti \to e^- + Ti) < 10^{-18}$$

Other Ideas

Racetrack FFAG

J. B. Lagrange et al, Straight Section in Scaling FFAG Accelerator, Proc.

PAC09, FRF5PFP002, Vancouver, Canada, 2009

• HCC

Other?

Detector Solenoid

Spectrometer Solenoid

Muon Storage Ring (Phase Rotator)

Pion and Muon Transport Solenoid

Pulsed Proton Beam

Pion Capture Solenoid

 http://projectx-docdb.fnal.gov/cgi-bin/ ShowDocument?docid=996

Muonium/AntiMuonium

V-A new physics: coupling

$$G_{\mathrm{Mu}\overline{\mathrm{Mu}}}$$

• World's best limit from PSI : (Willmann, L., Jungmann, K. et al.(1999), Phys. Rev. Lett. 82, 49) $\Delta L = 2$

 $G_{Mu\overline{Mu}} < 3 \times 10^{-3}G_F$ (Probability of spon. transition $< 8.2 \times 10^{-11}$)

- Wide variety of Beyond Standard Model Physics
- Could be improved x100 with better resolution and pulsed beam, so $\sim 10^{-5}G_F$

R. Bernstein, FNAL

High Intensity Secondary Beams

Muonium-Antimuonium

doubly charged Higgs, heavy Majorana

neutrinos, ...

• oscillates like $K^0 - \bar{K^0}$

but damped by muon lifetime

Probability of antimuonium decay from

R. Bernstein, FNAL

High Intensity Secondary Beams

17 April 2013

Time-Behavior

- Prepare muonium
- Look for positrons vs. time

- positron left behind after negative muon decay at "1s" energy of 13.5 eV
- But there's a muon decay background:
 - $\mu^+ \rightarrow e^+ e^- e^+ 2\nu$
 - sometimes the electron is background

So Pulse Beam to Suppress Muon Decay

- Wait enough muon lifetimes to suppress decays
- Want pulses (somewhat arbitrary) five muon lifetimes apart
- then the rest is the detector resolution
- should be able to do x100 better(from discussions with people who did last generation)
- muonium yield requirement not as stringent as cold g-2, should be manageable

Summary

- One accelerator? Multiple Accelerators?
 - that's for you to decide
- Sociological Comment: in neutrino world, get a big advantage from multiple neutrino experiments at one site; similar constructive interference between g-2 and Mu2e
 - grad student/post-doc pipeline
 - easier to build a program
 - well-demonstrated at PSI

Conclusions: Beam Requirements

- Wide variety of beams required
 - pulse rates, muon energy, etc. vary
- Flexibility and Power are most important drivers

Physics Process	Continuous/Pulsed	Capture /Stopped	$\sim \#$ Muons	Muon KE
$\mu \to 3e$	continuous	stopped	$\mathcal{O}(10^{18})$	surface
$\mu o e \gamma$	continuous	$\operatorname{stopped}$	$\mathcal{O}(10^{18})$	surface
$\mu^- N \rightarrow e^- N$	pulsed	$\operatorname{capture}$	$\mathcal{O}(10^{23})$	$\leq 50 \text{ MeV}$
$\mu^- N \rightarrow e^+ N(A, Z-2)$	pulsed	$\operatorname{capture}$	$\mathcal{O}(10^{21})$	$\leq 50 \text{ MeV}$
$\mu^+e^- \to \mu^-e^+$	pulsed	stopped	$\mathcal{O}(10^{15})$	surface

these are very rough numbers

R. Bernstein, FNAL

High Intensity Secondary Beams